

scatole di montaggio

In tutti gli apparecchi radio-oscillatori i cristalli di quarzo hanno assunto una importanza sempre crescente. Per queste ragioni, i tecnici, e in generale tutti coloro che si cimentano nel campo elettronico, hanno spesso la necessità di stabilire se un quarzo sia o non sia efficiente oppure di paragonare diversi quarzi fra loro.

In tutti questi casi uno strumento come l'UK 465 risolve brillantemente ogni problema.

CARATTERISTICHE TECNICHE

Prova dell'attività dei quarzi compresi nella gamma di frequenze fra 50 kHz e 160 MHz

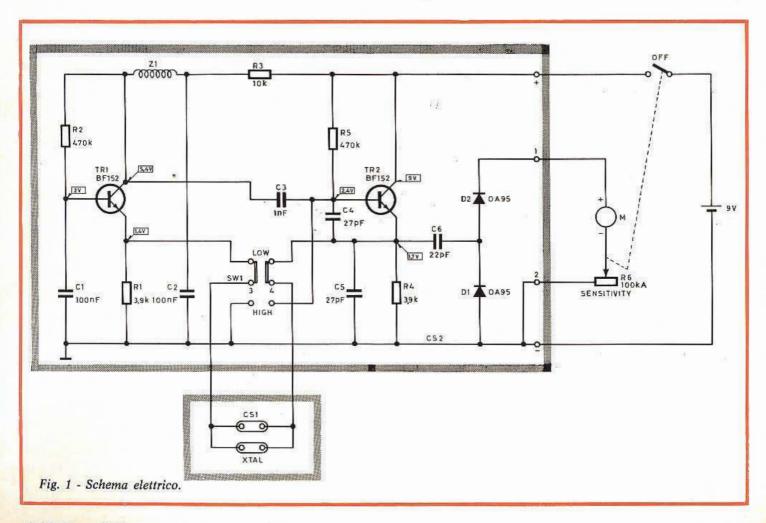
Strumento:

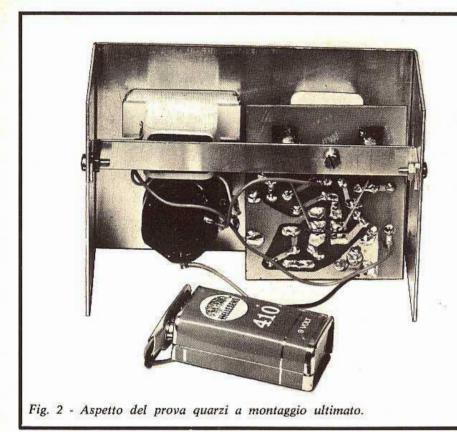
microamperometro 200 µA

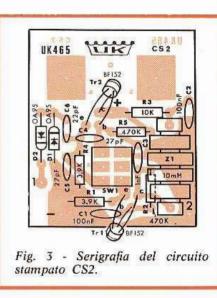
Sensibilità dello strumento:

regolabile con continuità

Transistori impiegati:


2xBF152


Diodi impiegati: Alimentazione: 2xOA95 pila da 9 V


SCHEMA ELETTRICO

o schema elettrico di questo prova quarzi, completamente transistorizzato, è visibile in fig. 1. Quando il commutatore SW1 è in posizione HIGH, il quarzo è inserito fra la base del transistore TR2 (BF152) e massa. Il transistore TR2 funziona a collettore comune. Il resistore R5 fornisce la polarizzazione di base mentre i condensatori C4 e C5 costituiscono il circuito di reazione.

Portando il deviatore SW1 in posizione LOW, il quarzo viene inserito fra i due emettitori di TR2 e di TR1 (BF152).

Questi due transistori costituiscono un oscillatore di Butler. L'impedenza a radiofrequenza Z1 serve ad alimentare il collettore del transistore TR1, impedendo che la tensione di oscillazione venga cortocircuitata dalla batteria. La tensione a radiofrequenza viene prelevata dall'emettitore di TR2 mediante il con-densatore C6, raddrizzata per duplicazione con i diodi D1-D2 (OA95) e applicata allo strumento indicatore M. La indicazione dello strumento è funzione dello stato di attività del quarzo.

MECCANICA DEL PROVA QUARZI

Meccanicamente il prova quarzi si compone di due parti e precisamente:

1) Contenitore nel quale è fissato lo strumento indicatore M, e il potenziometro R6 per la regolazione della sensibilità (SENSITIVITY)

2) Circuito stampato sul quale sono montati tutti i componenti e che viene fissato nel contenitore.

NORME D'IMPIEGO

1) Predisporre il commutatore SW1 in

posizione HIGH Inserire il quarzo in esame nello zoccolo adatto, oppure appoggiare i piedini di questo ai contatti dello zoccolo se lo stesso non è adatto.

Accendere l'apparecchio mediante la manopola MI1, e leggere l'indicazione dello strumento indicatore M regolandone a piacere la sensibilità.

L'indicazione dello strumento non è una misura; ma serve ad indicare se il quarzo in prova funziona oppure no.

Per paragonare quarzi della stessa frequenza fra di loro la maggiore o minore indicazione dello strumento servirà ad indicare quale è il quarzo migliore.

Qualora lo strumento indicatore M non indichi nulla e il quarzo in prova abbia una frequenza inferiore a 5 MHz, predisporre il commutatore SW1 in posizione Low. Se con questa prova lo strumento non indicherà nulla, significa che il quarzo non è efficiente.

Prezzo netto imposto L. 7.600

questi gli articoli più interessanti

- Tubo a memoria di segnale
- Perfezionamenti negli altoparlanti Hi-Fi
- Prepariamoci per la TVC
- La scatola nera
- Comunicazioni interstellari
- Controllo elettronico delle fratture meccaniche
- Lettura programmata delle radiografie
- Generatore sinusoidale RC da 20 a 200 kHz
- I superconduttori
- Televisione a colori parte VII